
Support & CR ManagementSupport & CR ManagementSupport & CR Management

CustomerCustomer Support CoordinatorSupport Coordinator
Support Rep

(Ticket Owner)
Support Rep

(Ticket Owner)
Developer ConsultantDeveloper Consultant

Sprint Team
via Scrum Master

Sprint Team
via Scrum Master

P
h

as
e

P
h

as
e

Select the “next” item in
your list

Triage
Triage the Item
and assign an

Owner and
Priority

Triage
Triage the Item
and assign an

Owner and
Priority

New CR

Perform your due diligence

Prepare your “ask” and
determine whether Interrupt

is warranted

Item is resolved?

Communicate back to
Customer

CR Closed
No

Yes

Enqueue your “ask” to
present at your next

scheduled session with
a Sprint Team member

Interrupt is warranted?

Negotiate with Scrum
Master for access to

Sprint Team

Validate whether
Interrupt is warranted

Interrupt is warranted?

Negotiate with Support
and Product regarding

Timeline and Sprint
Impact

Validate Quality of the “ask”

Quality meets criteria?

Asign item to Sprint
Team with

exepectations as
negotiated

https://support.microsoft.com/en-us/office/display-a-visio-diagram-on-a-web-page-cecad64e-e0c4-49d0-93e0-acdd3709c57c
https://support.microsoft.com/en-us/office/display-a-visio-diagram-on-a-web-page-cecad64e-e0c4-49d0-93e0-acdd3709c57c

Item enters our Radar
Item goes unnoticed

OR
Item is reviewed but

not a priority

Item hits the fan and
disrupts current sprint

Avoid disruption by
planning item into

sprint NO LATER than
here

Triage the item and
assess likelihood of
escalation and the

likely timeline within
which that may happen

H
O

T In
te

n
sity C

O
O

L

TIME

What are common characteristics of these items?
• Age? What is typical age?
• Customer?
• Module?
• Past frustration? General customer demeanor?
• Quantity of issues for same Customer?

Do we track whether an item was resolved as part of an escalation?

Window of Opportunity

Item goes unnoticed
OR

Item is reviewed but
not a priority

Item goes unnoticed
OR

Item is reviewed but
not a priority

Sprint
Boundary

Sprint
Boundary

Sprint
Boundary Sprint

Boundary

IDEAL
Target

Delivery
Here...

WORST
Is delivery

here

NEXT BEST
Target

Delivery
even if

escalated

Product work prioritization:
• Nothing is more important than being ready for the next Sprint (n + 1).
• Once the next Sprint is Ready, or on track to be ready, balance priorities among work related to

sprint n+2 and other activities part of your role

2 weeks2 weeks1 Week1 Week2 weeks (13 days)2 weeks (13 days) 1 business day1 business day

See also: Feature LifecycleSee also: Feature Lifecycle

STAGE Port

PROD Port

Tuesday: Sprint Review

Sprint Planning

PRODUCT
• Ensure 110% of expected Team velocity is

identified and meets DoR
• After Review prepare for tomorrow’s Sprint

Planning (inputs: DoR backlog and capacity plan)

Sprint Planning

TEAM
• Present work back to Product
• Identify items and effort not completed this sprint
• Retrospective
• Merge completed work to integration branch

SCRUM MASTER
• Gather Sprint metrics

• Supply next sprint capacity plan (i.e. Velocity)

1 week
These assumptions invariably turn out to be

incorrect forcing the Business to complete more
work within the originally estimated timeframe,

causing intensity to increase rapidly. Things
snowball as other features fall behind which

raises the intensity on those features, etc etc.

CURRENT STATE

3 - 4 weeks
Feature is known to the Business, but languishes for some weeks
until triggered for action in some way, typically customer inquiry?

3 - 4 weeks
Feature is known to the Business, but languishes for some weeks
until triggered for action in some way, typically customer inquiry?

1 week1 week

2 -3 weeks
Urgency around the item starts increasing and assurances are

made to customer about expected delivery dates

 2 weeks
 (1 Sprint)

Assumptions are made about how
much we know about the feature

and how long it will take to
develop, test and deliver

Intensity / Urgency Profile

0
2

1
6

3
2

4
8

0
2

1
6

3
2

4
8

0
2

1
6

3
2

4
8

0
2

1
6

3
2

4
8

Intensity / Urgency ProfileIntensity / Urgency Profile

See this article (and many others)See this article (and many others)

Comfort Zone

Stretch Zone

Panic Zone

Set and Stay in Stretch Zone

7 – 9 weeks

7 – 9 weeks7 – 9 weeks

1 week1 week
2 weeks

(1 Sprint)

2 weeks
(1 Sprint)

• “known knowns”: Team works on these during the Sprint and delivers completed incremental value by Sprint end
• “known unknowns”: Team researches and converts these to “known knowns” during the Sprint and supplies estimates for solutions
• “unknown unknowns”: Team discovers new unknowns during the Sprint converting these new findings to “known unknowns” for

vetting and inclusion in subsequent sprint if required

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Sprint 1 Sprint 2 Sprint 3 Sprint 4

Iterative Completion

Completed Known Knowns Known Unknowns Unknown Unknowns

2 weeks
(1 Sprint)

FUTURE STATE

1 week1 week

7 – 9 weeks7 – 9 weeks

1 week1 week
2 weeks

(1 Sprint)

2 weeks
(1 Sprint)

2 weeks
(1 Sprint)

Product Begins
Grooming

Scramble to get to STAGE
Team implements Sprint Review feedback

QA Prioritizes Deployment Testing
Newly started Sprint heavily impacted

Enough understood from
Customer to begin internal
grooming

Product (PO/BA) begins defining the item.
• GOAL: Identify known knowns and known unknowns and ready items from both categories for Sprint #1
• Litmus test: as it becomes harder to define requirements (i.e. more questions than answers) STOP and assess whether

what *is* known can be meaningfully engaged by the Sprint Team on a first iteration or if more information is needed
from the Customer

STAGE typical by
Week 9

Feature Goes to Team

Feature
expected to be

complete

• Assign desired “known knowns” for completion by the Sprint Team
• Assign desired “known unknowns” for research, recommendations and estimates by the Sprint Team
• Assign “unknown unknowns” to the Team in the form of a request to document new findings,

essentially creating new “known unknowns”

PO/BA/Team assess completion of acceptance
criteria and discoveries by Team during iteration #1
and plans Iteration #2 accordingly

Possible delivery to
STAGE after week 7

We end up iterating in disruptive ways late in
the game and under high pressure.

PO/BA/Team assess completion of acceptance criteria
and discoveries by Team during iteration #2 and plans
Iteration #3 accordingly, or feature is complete

Product (PO/BA) begins defining the item.
• GOAL: Identify known knowns and known unknowns and ready items from both categories for Sprint #1
• Litmus test: as it becomes harder to define requirements (i.e. more questions than answers) STOP and assess whether

what *is* known can be meaningfully engaged by the Sprint Team on a first iteration or if more information is needed
from the Customer

STAGE typical by
Week 9

• Assign desired “known knowns” for completion by the Sprint Team
• Assign desired “known unknowns” for research, recommendations and estimates by the Sprint Team
• Assign “unknown unknowns” to the Team in the form of a request to document new findings,

essentially creating new “known unknowns”

PO/BA/Team assess completion of acceptance
criteria and discoveries by Team during iteration #1
and plans Iteration #2 accordingly

Possible delivery to
STAGE after week 7

PO/BA/Team assess completion of acceptance criteria
and discoveries by Team during iteration #2 and plans
Iteration #3 accordingly, or feature is complete

https://utesinternationallounge.com/why-comfort-zone-and-stretching-zone-can-be-almost-one/
https://utesinternationallounge.com/why-comfort-zone-and-stretching-zone-can-be-almost-one/

TODO BLOCKED In Development In Code Review Ready for QA In QA Pending Bugs
Sprint Done
Meets DoD

Feature 1
(Epic)

Feature 2
(Epic)

Feature 3
(Epic)

Feature 4
(Epic)

Maintenance
([Ongoing?] Epic)

Not to Exceed Team
Sprint Capacity

1 Sprint Item Per
Developer

Unlimited
1 Sprint Items per QA

Team Member
1 Sprint Item Per

Developer
1 Sprint Item Per

Developer
1 Sprint Item Per

Developer
1 Sprint Item Per

Developer
Work in Progress (WiP) Limits

This ALL happens on the Development branch in source control and it’s unique connected environment.
QA will [request a] trigger a new deployment to the corresponding DEV server on a timing that suits their needs.

NO code merging anywhere should be needed for functional testing.
Feature

User Story

Task

Test Cases

Bug

Feature

Epic

Bug

Do this if WiP Exceeded:

Unblock an item in the
column.

If you need attention
from another team
member or colleague,
ensure you get it.

If the item cannot be
unblocked in this sprint,
REMOVE it from the
Sprint and ensure it is
top of rank in the

Product Backlog.

Do this if WiP Exceeded:

Finish an item already in
the development column,
and move it on to Code
Review.

When selecting an item to
finish, select from the
items that have, at any
time, already progressed
the furthest right on the
Board (example: Came
from Pending Bugs)

Move an item BACK to
TODO or into BLOCKED,

respecting the WiP rules.

Do this if WiP Exceeded:

Complete the code
review for an item in this
column and move it to
Ready for QA or Back to

In Development

Do this if WiP Exceeded:

Team to discuss how to
accelerate QA by utilizing
more of the team’s time
(any role) to Test items In

QA.

Do this if WiP Exceeded:

Team to discuss how to
accelerate QA by utilizing
more of the team’s time
(any role) to Test items
In QA.

Complete QA and move
to Pending Bugs or Sprint

Done

Do this if WiP Exceeded:

Move an item back to In
Development, observe
WiP rules.

Finish coding fixings for
the “oldest” item already
in this column.

For the assigned team
member(s) DO NOT
continue on with other
development until these
bugs are fixed and ready

for testing.

Focus on completing Features. These are what ultimately

get delivered to Customers.

Ideally this will always be a merge of the entire DEV branch since a branch
is a feature, GOAL: no cherry picking.

Since the team is focused on completing sprint items for a feature and fully
testing those items in the sprint, the feature branch can at least be

expected to be stable.

Team should consider using shelf-sets as opposed to check-ins for any late
sprint work that may destabilize the feature branch in DEV.

Release Type

Sprint DONE to STAGE
(Functional testing fully
complete in DEV, create

Release n+2)

Stage UAT to STAGE
(Urgent Customer issues

fixed, re-port updated
Release n+1

STAGE to PROD
(Port Release n+1 to

PROD for the first
time)

STAGE_HF to PROD
(Critical fixes

addressed, re-port
Release n to PROD)

Select Candidate items
from the DONE Column in

the Sprint and assign to
Release Number to the

Items (Jira)

Sprint Review is
Complete?

Create the Next
Release version
number in Jira

Create the Next
Release version
number in Jira

Create an Instance of
the Port Instructions
from the Template

The Port Tech Owner
owns oversight on

remaining steps

Merge all desired
items and change

sets from the specifc
DEV branch(es) to

the Integration
Branch

Additional items are
“near” completion AND they

must be in the next STAGE
release?

Complete
development and

testing on candidate
items in the DEV

branch in which they
exist

Merge
Freeze Date

is past?

Yes

No

No

An automation
pipeline builds the
Integration Branch.

Devs resolve any
build errors

immediately.

Team (QA member) selects a
build to deploy to TEST and
runs the Release Test Plan
(=Tests related to all items

merged into REP-Integration)

Any Tests Fail?

Tester creates Bug
from the Fail result
(failing test info is

automatically
included in Bug)

Devs resolve any
bugs directly on

Integration
Yes

Lock Integration
branch until next
release assembly

Identify Release n+1
(STAGE) branch and Merge

ALL Changes from it
through SOURCE to

Integration

Identify Release n branch
(STAGE HF) and Merge ALL

Changes from it through
SOURCE to Integration

Unlock Integration
branch to accept

Check-ins

Yes

Pull a TFS Report on all
changes made within the

branch structure that have
occurred since the last
Merge to Integration

Review the Change Report
with Contributors on

branches not currently
active with the Team.

Select change sets / work
items that must be

included in the next STAGE
release.

Complete the Sprint

No

Pull any Porting notes,
scripts, resources together

related to the work
targeted to the Release

and populate the Porting
Instructions document

Execute the Porting instructions step-by-
step on TEST, amend any discovered

gaps in the instructions
(Automation Deploys the Integration

Branch to TEST).

Deliver completed
Release Test Plan
indicating all tests

pass or documented
releasable known

issues.

No

Execute Porting
Instructions step-by-

step on STAGE,
amend any

discovered gaps in
the instructions

DONE RELEASE

Let Release n = Release currently on PROD

The Sprint DONE to STAGE process executes within the 6
business days between Sprint End and STAGE
deployment date the following Thursday.

Track all time against SCTB-17 Release: Sprint to STAGE

Special
Circumstances?

No

Yes

Yes

Follow Branching
Strategy to push
Integration into

Source and Branch
Source to new

branch Release n+2
under Releases

Team (QA member) selects a
build to deploy to TEST and

runs the Release Test Plan on
STAGE

Any Tests Fail?

Tester creates Bug
from the Fail result
(failing test info is

automatically
included in Bug)

Devs resolve any
bugs directly on

Release n+2 Branch
Yes

No

Deliver completed
Release Test Plan
indicating all tests

pass or documented
releasable known

issues.

This same document will be re-used for STAGE to PROD
Set:
Product Name
Release Number
Merge Freeze Date and Time
Integration Code Freeze Date and Time
Port Tech Owner
Port Business Owner
Release artefacts folder (SharePoint)

As the Team gets better at finishing things before starting new things, the list of
items that are “close” will become very short. Items will either be done or not
meaningfully started. The Team can help themselves by ensuring this is the case
as the Sprint progress – see Sprint Board slide.

https://gryphtech.atlassian.net/projects/ICT?selectedItem=com.atlassian.jira.jira-projects-plugin%3Arelease-page
https://gryphtech.atlassian.net/projects/ICT?selectedItem=com.atlassian.jira.jira-projects-plugin%3Arelease-page

Stabilization on Intergration Branch (code freeze following)
Planned Case: 4 business days, 2 QA (8 QA days), 2 Developer Days
Best Case: 1 business day, 2 QA (2 QA Days), .5 Developer Days
Expected Case: 2 business days, 2 QA (4 QA Days), 1 Developer Day
Worst Case: 4 business days, 2 QA (8QA days), 2 Developer Days

2 weeks

Dev Branch – must pass QA testing here

1 business day

Merge acceped items
from the Sprint into

the Integration branch
and deploy to TEST

Create Release
Branch and

Port to Stage
Tuesday EOD

Integration
Branch contains all

Release targets
Wednesday EOD

Sprint
Complete

Tues
STAGE
Customer Delivery
Wednesday EOD

RELEASE
Code Freeze

All work occurs and passes QA to the
left of this wall, else it CANNOT

proceed to a release cycle

Sprint Test Plan

RELEASE
Test Plan – all tests pass
on TEST or known issues

documented
Product | QA | Dev sign-

off

All Release test
pass, plan sign-

off

All sprint tests pass,
plan sign-off

PROD Port

PROD Port
previous Stage

Mon

	AgileProcessGuidance.vsdx
	Support CR Management
	Avoiding Disruption
	BusinessSprintCadence
	Feature Lifecycle
	Sprint Board
	Release Planning
	ReleaseTimeline

